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Abstract

The in®nitesimal (local) stability of uniform beams and circular arches under the terminal nonconservative
loading is studied. The nonlinear equilibrium with large de¯ections is expressed in a closed form. Then, the

equations which govern a free motion about the equilibrium position are constructed. The eigenvalue analysis of the
linearized system of di�erential equations with varying coe�cients is performed by the ®nite element concept and
the subdomain collocation method. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the recent paper by Vitaliani et al. (1997) the geometrically nonlinear behavior and in®nitesimal
stability of structures, which can be modeled as an assemblage of 3D curved beams, is analyzed. The
®nite element formulation allows to calculate the eigenvalues of the loaded structure with and without
damping, thus de®ning the critical value of the load.

This paper is limited to the plane geometrically nonlinear deformation of beams and circular arches of
uniform cross section, subjected to terminal nonconservative forces. Under these assumptions the
equilibrium position is expressed in a closed form, in terms of the elliptical functions, and the problem
of an in®nitesimal stability reduced to an eigenvalue analysis of the sixth order system of linear
di�erential equations with varying coe�cients. These equations describe small free vibration in the
vicinity of the equilibrium position and it is required to ®nd one or two lowest eigenvalues.

For the eigenvalue analysis, the ®nite element approach and the method of weighted residuals is used.
The selection of unity weighting function (the method of subdomain collocation) allows to simplify the
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assembly procedure and the assembled matrix as compared to Galerkin method. Additionally, the
governing di�erential equations are reduced to the system of the ®rst order so that two node elements
and linear interpolation functions are su�cient.

The advantages and disadvantages of the mixed formulation are discussed in Zienkiewicz and Taylor
(1989) for a broad class of problems, and the important disadvantage mentioned is the nonsymmetric
sti�ness matrix. However, for the nonconservative loads considered here, the sti�ness matrix is
inherently nonsymmetric regardless of the method used.

The accuracy of the proposed approach is demonstrated in an example of the non-self-adjoint
equation with constant coe�cients. For the case of varying coe�cients the results are compared to those
obtained by Vitaliani et al. (1997).

2. Equations of motion of a curve beam

Equations of a plane motion of an inextensional curve beam with large de¯ections and rotations can
be written as (Chernykh, 1986; Detinko, 1998)

Q 0 � g 0N� S � 0 �1�

N 0 ÿ g 0Q� T � 0 �2�

S 0 � g 0T� l2 �g � 0 �3�

T 0 ÿ g 0Sÿ l2 _g_g � 0 �4�

Q �M 0 �5�

M � ÿb 0 �6�

b � gÿ j �7�
Here b is the rotation angle (Fig. 1), Q, N are the shear and normal stress resultants referred to the
distorted coordinate system (n, t ), M is the bending moment, S, T are the normal and tangential
components of inertia forces, l2 � mR4=EI, and m is mass per unit length.

A prime denotes the derivative with respect to the independent variable j and a dot indicates the time
derivative. All forces are dimensionless and related to the physical forces �Fn, Ft, My, Gn, Gt� by

�Q, N� �
ÿ
R2=EI

�
�Fn, Ft �, M � �R=EI�My, �S, T� �

ÿ
R3=EI

�
�Gn, Gt� �8�

Eqs. (1)±(7), together with initial and boundary conditions, determine the forces and rotation. When the
latter is known the displacements can be found as follows. The (x, z ) components of displacement
�ux, uz), normalized with respect to R, are

ux � xÿ x0, uz � zÿ z0 �9�
where �x0, z0� and (x, z ) are coordinates of the point before and after the deformation, respectively.
Di�erentiating (9) and taking into account the geometrical relationships
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x 0 � sin g, z 0 � cos g �10�
we obtain

u 0x � sin gÿ sin j, u 0z � cos gÿ cos j �11�
The (n, t ) components of displacement are

w � ux cos gÿ uz sin g, v � ux sin g� uz cos g �12�
Finally, the inertia forces can be expressed in terms of displacements. To this end observe that

S � ÿl2� �ux cos gÿ �uz sin g�, T � ÿl2� �ux sin g� �uz cos g� �13�
solve Eq. (12) for �ux, uz)

ux � w cos g� v sin g, uz � ÿw sin g� v cos g �14�
calculate the second time derivatives and obtain from Eq. (13)

S � ÿl2
ÿ

�w� 2_g _vÿ _g2w� �gv
�

T � ÿl2
ÿ
�vÿ 2_g _wÿ _g2vÿ �gw

�
�15�

Notice, that if inertia forces (S, T ) form (1) and (2) are inserted into (3) and (4) one can restore Eqs.
(35) and (36) of Simmonds (1979).

For the initially straight beam one should set j � 0 in Eqs. (7) and (11), and replace the independent
variable by x � s=L, where L is the length of a beam.

Fig. 1. Geometry and notations.
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3. Equilibrium state

At the equilibrium state _g � S � T � 0, Eqs. (3) and (4) are identically satis®ed, and Eqs. (5)±(7)
yields Q � ÿg 00:
Inserting this into Eq. (2) and integrating one obtains the normal force

N � Cÿ G2=2, G � g 0 �16�
where C is an integration constant. Eq. (1) now yields

G 00 ÿ CG� 1

2
G3 � 0 �17�

Thus, all forces are expressed in terms of the curvature, and the displacements can be found from Eqs.
(11) and (12) by direct integration. Depending on the boundary conditions, one of the four following
solutions of Eq. (17) may be convenient:

G � G0cn�hj� t�, G2
0 � 4k2h2, C � �2k2 ÿ 1�h2 �18�

G � G0
sn�hj� t�
dn�hj� t� , G2

0 � 4k2�1ÿ k2�h2, C � �2k2 ÿ 1�h2 �19�

G � G0dn�hj� t�, G2
0 � 4h2, C � �2ÿ k2�h2 �20�

G � G0

dn�hj� t� , G2
0 � 4�1ÿ k2�h2, C � �2ÿ k 2�h2 �21�

where sn(x ), cn(x ), dn(x ) are Jacoby elliptic functions with modulus k. The constants h, t, k are to be
found from the boundary conditions.

4. Stability analysis

To examine the stability of an equilibrium state of the arch by the dynamic method one needs
equations, describing the motion of the arch about this state. Introduce small perturbations gp, bp, Mp,
Np, Qp, Sp, Tp and let

g � gp � gs, b � bp � bs, M �Mp �Ms, N � Np �Ns, Q � Qp �Qs �22�

where the subscript ``s'' denotes a state (solution), the stability of which is in question. Inserting Eq. (22)
into Eqs. (1)±(7) and taking into account that solution ``s'' satis®es equations of Section 3 yield

g 0p � ÿMp, M 0
p � Qp

Q 0p � GNp ÿ
�
Np � Cÿ G2=2

�
Mp � Sp � 0

N 0p ÿ GQp �
ÿ
Qp ÿ G 0

�
Mp � Tp � 0
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S 0p �
ÿ
GÿMp

�
Tp � l2 �gp � 0

T 0p ÿ
ÿ
GÿMp

�
Sp ÿ l2 _g2p � 0 �23�

Next, neglect the nonlinear terms of perturbations and let for any function

Zp�j, t� � Z�j� exp�iOt�

The variables �j, t� are separated and one obtains the eigenvalue problem for the system

g 0 � ÿM, M 0 � Q

Q 0 � GNÿ
ÿ
Cÿ G2=2

�
M� S � 0

N 0 ÿ GQÿ G 0M� T � 0

S 0 � GTÿ o2g � 0

T 0 ÿ GS � 0 �24�
where o � lO is the dimensionless frequency of vibration. The varying coe�cients in Eq. (24) depend
on function G � G�j� which is found from Eqs. (18)±(21) and represents the equilibrium stability of
which is in question.

The same procedure yields from Eq. (15) in the linear approximation

S � o2�w� vsg�, T � o 2�vÿ wsg� �25�

The amplitudes of vibration in Eqs. (24) and (25) should not be confused with the variables in Eqs. (1)±
(7) although the same notations were retained. The system (24) must be supplemented by six
appropriate homogeneous boundary conditions.

Applying for the solution of Eq. (24) the ®nite element method, each variable is approximated by the
interpolation function

z�x� � n1�x�zi � n2�x�zi�1

n1�x� � xi�1 ÿ x

d
, n2�x� � xÿ xi

d
, d � xi�1 ÿ xi �26�

Next, each Eq. (24) is integrated over the length of an element with the weighting function equal to
unity inside the element and zero elsewhere. This approach does not require the di�erentiation of the
assumed interpolation functions and considerably simpli®es the element assembly procedure (at the
possible cost of increased number of elements). Dividing the total length into n0 equal elements, the
discrete system is obtained

gi�1 ÿ gi � n�Mi�1 �Mi � � 0, Mi�1 ÿMi ÿ n�Qi�1 �Qi � � 0

Qi�1 ÿQi �NiG1i �Ni�1G2i ÿMiH1i ÿMi�1H2i � n�Si�1 � Si � � 0
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Ni�1 ÿNi ÿQiG1i ÿQi�1G2i ÿMiF1i ÿMi�1F2i � n�Ti�1 � Ti � � 0

Si�1 ÿ Si � TiG1i � Ti�1G2i ÿ o2n�gi�1 � gi � � 0

Ti�1 ÿ Ti ÿ SiG1i ÿ Si�1G2i � 0 �27�

where

n �
�x i�1

x i

n1�x� dx �
�x i�1

x i

n2�x� dx � d=2

F1i �
�x i�1

x i

n1�x�G 0�x� dx, G1i �
�x i�1

x j

n1�x�G�x� dx,

H1i �
�x i�1

x i

n1�x�
ÿ
Cÿ G2�x�=2

�
dx

xi � �iÿ 1�d, i � 1, 2, . . . , n0 �28�

Similar formulas apply for F2i, G2i, H2i of the ith element. With an introduction of the vector-column

Zi � �gi, Mi, Qi, Ni, Si, Ti �T �29�

the matrix for the start of an element BSi, and the matrix for the end of an element BEi

BSi �

26666664
ÿ1 n 0 0 0 0
0 ÿ1 ÿn 0 0 0
0 ÿH1i ÿ1 G1i n 0
0 ÿF1i ÿG1i ÿ1 0 n
ÿno 2 0 0 0 ÿ1 G1i
0 0 0 0 ÿG1i ÿ1

37777775

BEi �

26666664
1 n 0 0 0 0
0 1 ÿn 0 0 0
0 ÿH2i 1 G2i n 0
0 ÿF2i ÿG2i 1 0 n
ÿno 2 0 0 0 1 G2i
0 0 0 0 ÿG2i 1

37777775

�30�

the system (27) can be written as

BSiZi � BEiZi�1 � 0, i � 1, 2, . . . , n0 �31�

The assembly procedure and incorporation of the boundary conditions will be shown below in the
numerical examples.
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5. Numerical examples

5.1. Example 1

This example concerns the famous problem of a cantilever beam under a compressing follower force
(Beck, 1952; Bolotin, 1963) and serves to check the accuracy of the subdomain collocation against an
exact solution. The stability of a straight con®guration of the beam is governed by

w 000 � pw 00 ÿ o2w � 0

w�0� � w 0�0� � 0

w 00�1� � w 000�1� � 0 �32�
where �p, o� are the dimensionless force and frequency. Introduction of the rotation b, the bending
moment M, and the shear force Q reduces the problem to

w 0 � b, b 0 �M, M 0 � Q, Q 0 � pMÿ o2w � 0 �33�

w�0� � b�0� � 0, M�1� � Q�1� � 0 �34�
Using the subdomain collocation method with the interpolation functions (26) for each variable and
integrating each Eq. (33) over the element length, one obtains

wi ÿ wi�1 � n
ÿ
bi � bi�1

� � 0

bi ÿ bi�1 � n�Mi �Mi�1 � � 0

Mi ÿMi�1 � n�Qi �Qi�1� � 0

Qi�1 ÿQi � pn�Mi �Mi�1� ÿ o2n�wi � wi�1� � 0 �35�
Note, that we do not have to replace the derivatives in Eq. (33) by the derivatives of the interpolation
functions, but if we did, the result after integration would be the same.

Introducing the vector-column

Zi �
ÿ
wi, bi,Mi, Qi

�T �36�
and the matrixes BS for the start of an element, and BE for the end

BS �

2664
1 n 0 0
0 1 n 0
0 0 1 n
ÿno2 0 pn ÿ1

3775 BE �

2664
ÿ1 n 0 0
0 ÿ1 n 0
0 0 ÿ1 n
ÿno2 0 pn 1

3775 �37�

Eq. (35) can be written as

BS Zi � BE Zi�1 � 0 �38�
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Now the eigenvalues are to be found from (assuming the total of four elements but the pattern is easily
seen for any number)

det

2664
bs BE B0 B0 b0
b0 BS BE B0 b0
b0 B0 BS BE b0
b0 B0 B0 BS be

3775 � 0 �39�

Here matrixes

bs �

2664
0 0
n 0
1 n
pn ÿ1

3775, be �

2664
ÿ1 n
0 ÿ1
0 0
ÿno2 0

3775 �40�

are obtained by deleting the ®rst two columns in BS and the last two columns in BE, respectively. This
re¯ects the imposition of the boundary conditions (34). Matrixes b0, B0 are 2� 4 and 4� 4 zero
matrixes, respectively. For another set of the boundary conditions only the matrixes bs, be are to be
changed while the rest of the Eq. (39) remains the same.

The exact frequencies for the considered problem can be found from

p2 � po sin�r1� sinh�r2� � 2o2�1� cos�r1 � cosh�r2�
� � 0

r21 �
�����������������������
�p=2�2�o2

q
� p=2, r22 �

�����������������������
�p=2� 2�o2

q
ÿ p=2 �41�

When p � 0 the system is conservative and consequently all roots of (39) and (41) are real numbers.
When the load increases the two lowest frequencies move closer and the load at which they coincide is
the critical load pcr (¯utter instability). In Table 1 the ®nite element results are compared to the exact
solution. For 15 elements the critical load di�ers from the exact value by 3%.

Eqs. (1)±(7) do not account for damping and some comments about its in¯uence in the presence of
nonconservative forces are here in order. To analyze stability, the equations of perturbed equilibrium
were linearized and Liapunov method of the ®rst approximation was applied. It was found that for p <
20 all characteristic numbers q � io are pure imaginary. In accordance with Liapunov, when real parts
of characteristic numbers of the linearized equations are zero these equations cannot serve to establish
the stability or instability of the equilibrium. It is well known also that for the conservative system with
the pure imaginary characteristic numbers, an addition of a small damping produces the negative real

Table 1

Eigenvalues and critical load for Beck (1952) problem

p Exact 10 elements 15 elements

o1 o2 o1 o2 o1 o2

0 3.52 22.0 3.53 22.9 3.52 22.4

10 5.18 18.6 5.20 19.6 5.19 19.0

20 10.5 11.5 9.19 14.1 9.65 12.9

pcr 20.05 21.2 20.6
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parts and stabilizes the system while in the presence of nonconservative forces this is not so. For the
review of an early development see Herrmann (1967).

Two approaches are possible to clarify the situation. The ®rst relies on the nonlinear equations of the
perturbed equilibrium and allows for the global dynamic analysis. For the discrete system this approach
was applied by Kounadis (1992) but the nonlinear partial di�erential equations (23) are even more
di�cult for analysis.

The second approach is to introduce damping in the linear equation. Doing so for the column under
consideration, Bolotin and Zhinzher (1969) showed that, if the column is made of the standard
viscoelastic material (internal damping only), the critical load for the in®nitesimal damping equals to
10.94. Denisov and Novikov (1975) considered both the internal and external damping and came to the
conclusion that depending on their ratio, when both are small, the critical load can be anywhere
between 20.05 and 10.94.

The damping could be accounted for in the equations of motion (1)±(7) but this analysis is beyond
the scope of the present paper.

5.2. Example 2

Circular arch ®xed at one end and loaded by a normal inward follower force at the other end. This is
the problem B13 of Vitaliani et al. (1997), where both the equilibrium position and frequencies of
vibration in the vicinity of this position were determined by the ®nite element method.

To ®nd the equilibrium con®guration analytically the solution (Eq. (19)) of Eq. (17) is used. The
boundary conditions at the loaded end

M�0� � 1ÿ G�0� � 0, N�0� � Cÿ G2�0�=2 � 0, Q�0� � ÿG 0�0� � ÿp �42�
yield three equations

G0sn t � dn t, 2�2k2 ÿ 1�h2 � 1, hG0cn t � pdn2t �43�
from which after some manipulations one ®nds

h2 � p, k2 � 2p� 1

4p
, sn2t � 2

1� 2p
, G2

0 � pÿ 1

4p
�44�

From the requirement k2 < 1 it follows that this solution is valid for p > 1=2: Otherwise the solution
(21) is used:

G � G0dnÿ1�hj� t�, G2
0 � dn2t � 1ÿ 2p, k 2 � 4p

2p� 1
, h2 � �2p� 1�=4 �45�

The displacements could be found from Eqs. (11) and (12) for the equilibrium state and from Eq. (25)
for the state of vibration. However, there is no need to do so if one is interested in the stability of
equilibrium only.

Now all the data are available to write the eigenvalues determinant

det

2664
bs1 BE1 B0 B0 b0
b0 BS2 BE2 B0 b0
b0 B0 BS3 BE3 b0
b0 B0 B0 BS4 be4

3775 � 0 �46�
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where matrixes

bs1 �

26666664
ÿ1 0 0
0 0 0
0 n 0
0 0 n
ÿno2 ÿ1 G11
0 ÿG11 ÿ1

37777775, be4 �

26666664
n 0 0
1 ÿn 0
ÿH24 1 G24
ÿF24 ÿG24 1
0 0 0
0 0 0

37777775 �47�

re¯ect the boundary conditions

M�0� � Q�0� � N�0� � 0, g�a� � S�a� � T�a� � 0 �48�
and a is the arch subtended angle. The matrixes b0, B0 are 3� 6 and 6� 6 zero matrixes, respectively.
Eq. (46) is again written for four elements but it clearly shows the pattern for any number of elements.
The calculated ®rst and second frequencies for a � p and 15 elements are shown in Fig. 2. The critical
load pcr � 3:76 compares well with the value 3.65 (dimensionless) found by Vitaliani et al. (1997). In
accordance with the latter work the slight Rayleigh-type damping reduces the critical load by 22%.

Omitting the details we notice in passing that if the load is directed outward the critical load decreases
to 1.41.

6. Conclusion

For the nonlinear equilibrium of uniform beams and circular arches under nonconservative loading,
the closed form solution is obtained.

The estimation of the critical load is reduced to an eigenvalue problem for the sixth order system of
the linear di�erential equations with varying coe�cients. To compute the eigenvalues from this system
the subdomain collocation method and the ®nite element approach are used. The critical load,
computed for the cantilever semicircular arch, is in close agreement with that obtained by Vitaliani et al.
(1997).

Fig. 2. First and second eigenvalues of the loaded arch.
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The method is quite accurate and yields a simple assembled matrix. Its application is limited to the
plane deformation of beams and circular arches with an uniform cross section.
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